Thursday, February 23

Nuclear Fusion Basics

Nuclear energy can also be released by fusion of two light elements (elements with low atomic numbers). The power that fuels the sun and the stars is nuclear fusion.

Nuclear Fission

In a hydrogen bomb, two isotopes of hydrogen, deuterium and tritium are fused to form a nucleus of helium and a neutron. This fusion releases 17.6 MeV of energy. Unlike nuclear fission, there is no limit on the amount of the fusion that can occur.


A fission bomb, called the primary, produces a flood of radiation including a large number of neutrons. This radiation impinges on the thermonuclear portion of the bomb, known as the secondary. The secondary consists largely of lithium deuteride. The neutrons react with the lithium in this chemical compound, producing tritium and helium.The production of tritium from lithium deuteride

This reaction produces the tritium on the spot, so there is no need to include tritium in the bomb itself. In the extreme heat which exists in the bomb, the tritium fuses with the deuterium in the lithium deuteride.


The question facing designers was "How do you build a bomb that will maintain the high temperatures required for thermonuclear reactions to occur?" The shock waves produced by the primary (A-bomb) would propagate too slowly to permit assembly of the thermonuclear stage (the secondary) before the bomb blew itself apart. This problem was solved by Edward Teller and Stanislaw Ulam.

Gamma Radiation

To do this, they introduced a high energy gamma ray absorbing material (styrofoam) to capture the energy of the radiation. As high energy gamma radiation from the primary is absorbed, radial compression forces are exerted along the entire cylinder at almost the same instant. This produces the compression of the lithium deuteride. Additional neutrons are also produced by various components and reflected towards the lithium deuteride. With the compressed lithium deuteride core now bombarded with neutrons, tritium is formed and the fusion process begins.  READ MORE...

No comments:

Post a Comment