Saturday, June 15

Geometry of Spacetime

When speaking of our universe, it's often said that 'matter tells spacetime how to curve, and curved spacetime tells matter how to move'. This is the essence of Albert Einstein's famous general theory of relativity, and describes how planets, stars, and galaxies move and influence the space around them.


While general relativity captures much of the big in our universe, it's at odds with the small in physics as described by quantum mechanics. For his PhD research, Sjors Heefer explored gravity in our universe, with his research having implications for the exciting field of gravitational waves, and perhaps influencing how the big and small of physics can be reconciled in the future.


A little over a hundred years ago, Albert Einstein revolutionized our understanding of gravity with his general theory of relativity. "According to Einstein's theory, gravity is not a force but emerges due to the geometry of the four-dimensional spacetime continuum, or spacetime for short," says Heefer. "And it's central to the emergence of fascinating phenomena in our universe such as gravitational waves."         READ MORE...

No comments:

Post a Comment