Showing posts with label Quantum Entanglement. Show all posts
Showing posts with label Quantum Entanglement. Show all posts
Friday, August 9
Brain Fibers & Quantum Entanglement
Most scientists have resisted the concept that quantum physics plays any role in the brain — an environment that Physicist Max Tegmark argued would be “too wet, warm and noisy” for quantum mechanics to play a meaningful role in cognition or consciousness..
However, recent research from China suggests that quantum entanglement—a phenomenon Albert Einstein famously dubbed “spooky action at a distance”—might play a role in the synchronization of neurons in the human brain, according to a New Scientist article.
The study, peer-reviewed in Physical Review E and also referenced in the online pre-print server ArXiv, examine the potential mechanisms by which quantum entanglement could impact neural synchronization and cognition. While both studies propose innovative ideas, they acknowledge the speculative nature of their findings and emphasize the need for further empirical validation. READ MORE...
Monday, July 15
Time as a Mirage
Time may not be a fundamental element of the universe but rather an illusion emerging from quantum entanglement, a new study suggests.
Time is a thorny problem for physicists; its inconsistent behavior between our best theories of the universe contributes to a deadlock preventing researchers from finding a "theory of everything," or a framework to explain all of the physics in the universe.
But in the new study, researchers suggest they may have found a clue to solving that problem: by making time a consequence of quantum entanglement, the weird connection between two far-apart particles. The team published their findings May 10 in the journal Physical Review A. READ MORE...
Monday, July 1
Faster than the Speed of Light
Researchers have confirmed that quantum entanglement persists between top quarks, the heaviest known fundamental particles.
Physicists have demonstrated quantum entanglement in top quarks and their antimatter partners, a discovery made at CERN. This finding extends the behavior of entangled particles to distances beyond the reach of light-speed communication and opens new avenues for exploring quantum mechanics at high energies.
An experiment by a group of physicists led by University of Rochester physics professor Regina Demina has produced a significant result related to quantum entanglement—an effect that Albert Einstein called “spooky action at a distance.”
Entanglement concerns the coordinated behavior of minuscule particles that have interacted but then moved apart. Measuring properties—like position or momentum or spin—of one of the separated pair of particles instantaneously changes the results of the other particle, no matter how far the second particle has drifted from its twin. In effect, the state of one entangled particle, or qubit, is inseparable from the other. READ MORE...
Sunday, June 9
Time Created by Quantum Entanglement
A new definition of time suggests that what we once thought was a fundamental element of our physical reality could actually just be an illusion created by quantum entanglement.
That’s a very bold statement and one that certainly requires a little digging into to fully understand. So, let’s dig in. To understand the core of this new theory, we need to understand a few things, including quantum entanglement.
By its most basic definition, quantum entanglement is when two objects are so inextricably linked that when one is disturbed, the other is also disturbed, no matter how far apart they are. We also need to understand how time works in “general relativity.” READ MORE...
Thursday, May 9
The Entropy of Quantum Entanglement
Bartosz Regula from the RIKEN Center for Quantum Computing and Ludovico Lami from the University of Amsterdam have shown, through probabilistic calculations, that there is indeed, as had been hypothesized, a rule of entropy for the phenomenon of quantum entanglement.
This finding could help drive a better understanding of quantum entanglement, which is a key resource that underlies much of the power of future quantum computers. Little is currently understood about the optimal ways to make effective use of it, despite it being the focus of research in quantum information science for decades.
The second law of thermodynamics, which says that a system can never move to a state with lower entropy, or order, is one of the most fundamental laws of nature, and lies at the very heart of physics. It is what creates the "arrow of time," and tells us the remarkable fact that the dynamics of general physical systems, even extremely complex ones such as gases or black holes, are encapsulated by a single function, its entropy. READ MORE...
Monday, April 3
Quantum Memory Stores Information
Researchers at University of Oxford have recently created a quantum memory within a trapped-ion quantum network node. Their unique memory design, introduced in a paper in Physical Review Letters, has been found to be extremely robust, meaning that it could store information for long periods of time despite ongoing network activity.
"We are building a network of quantum computers, which use trapped ions to store and process quantum information," Peter Drmota, one of the researchers who carried out the study, told Phys.org. "To connect quantum processing devices, we use single photons emitted from a single atomic ion and utilize quantum entanglement between this ion and the photons."
Trapped ions, charged atomic particles that are confined in space using electromagnetic fields, are a commonly used platform for realizing quantum computations. Photons (i.e., the particles of light), on the other hand, are generally used to transmit quantum information between distant nodes. Drmota and his colleagues have been exploring the possibility of combining trapped ions with photons, to create more powerful quantum technologies.
"Until now, we have implemented a reliable way of interfacing strontium ions and photons, and used this to generate high-quality remote entanglement between two distant network nodes," Drmota said. "On the other hand, high-fidelity quantum logic and long-lasting memories have been developed for calcium ions. In this experiment, we combine these capabilities for the first time, and show that it is possible to create high-quality entanglement between a strontium ion and a photon and thereafter store this entanglement in a nearby calcium ion."
Integrating a quantum memory into a network node is a challenging task, as the criteria that need to be fulfilled for such a system to work are higher than those required for the creation of a standalone quantum processor. Most notably, the developed memory would need to be robust against concurrent network activity. READ MORE...
Tuesday, February 7
Quantum Entanglement: Spacetime is an illusion
This past December, the physics Nobel Prize was awarded for the experimental confirmation of a quantum phenomenon known for more than 80 years: entanglement. As envisioned by Albert Einstein and his collaborators in 1935, quantum objects can be mysteriously correlated even if they are separated by large distances. But as weird as the phenomenon appears, why is such an old idea still worth the most prestigious prize in physics?
Coincidentally, just a few weeks before the new Nobel laureates were honored in Stockholm, a different team of distinguished scientists from Harvard, MIT, Caltech, Fermilab and Google reported that they had run a process on Google’s quantum computer that could be interpreted as a wormhole. Wormholes are tunnels through the universe that can work like a shortcut through space and time and are loved by science fiction fans, and although the tunnel realized in this recent experiment exists only in a 2-dimensional toy universe, it could constitute a breakthrough for future research at the forefront of physics.
But why is entanglement related to space and time? And how can it be important for future physics breakthroughs? Properly understood, entanglement implies that the universe is “monistic”, as philosophers call it, that on the most fundamental level, everything in the universe is part of a single, unified whole. It is a defining property of quantum mechanics that its underlying reality is described in terms of waves, and a monistic universe would require a universal function.
Already decades ago, researchers such as Hugh Everett and Dieter Zeh showed how our daily-life reality can emerge out of such a universal quantum-mechanical description. But only now are researchers such as Leonard Susskind or Sean Carroll developing ideas on how this hidden quantum reality might explain not only matter but also the fabric of space and time.
Entanglement is much more than just another weird quantum phenomenon. It is the acting principle behind both why quantum mechanics merges the world into one and why we experience this fundamental unity as many separate objects. At the same time, entanglement is the reason why we seem to live in a classical reality. It is—quite literally—the glue and creator of worlds.
Entanglement is much more than just another weird quantum phenomenon. It is the acting principle behind both why quantum mechanics merges the world into one and why we experience this fundamental unity as many separate objects. At the same time, entanglement is the reason why we seem to live in a classical reality. It is—quite literally—the glue and creator of worlds.
Entanglement applies to objects comprising two or more components and describes what happens when the quantum principle that “everything that can happen actually happens” is applied to such composed objects. Accordingly, an entangled state is the superposition of all possible combinations that the components of a composed object can be in to produce the same overall result. It is again the wavy nature of the quantum domain that can help to illustrate how entanglement actually works.
Picture a perfectly calm, glassy sea on a windless day. Now ask yourself, how can such a plane be produced by overlaying two individual wave patterns? One possibility is that superimposing two completely flat surfaces results again in a completely level outcome. But another possibility that might produce a flat surface is if two identical wave patterns shifted by half an oscillation cycle were to be superimposed on one another, so that the wave crests of one pattern annihilate the wave troughs of the other one and vice versa. If we just observed the glassy ocean, regarding it as the result of two swells combined, there would be no way for us to find out about the patterns of the individual swells.
Picture a perfectly calm, glassy sea on a windless day. Now ask yourself, how can such a plane be produced by overlaying two individual wave patterns? One possibility is that superimposing two completely flat surfaces results again in a completely level outcome. But another possibility that might produce a flat surface is if two identical wave patterns shifted by half an oscillation cycle were to be superimposed on one another, so that the wave crests of one pattern annihilate the wave troughs of the other one and vice versa. If we just observed the glassy ocean, regarding it as the result of two swells combined, there would be no way for us to find out about the patterns of the individual swells.
What sounds perfectly ordinary when we talk about waves has the most bizarre consequences when applied to competing realities. If your neighbor told you she had two cats, one live cat and a dead one, this would imply that either the first cat or the second one is dead and that the remaining cat, respectively, is alive—it would be a strange and morbid way of describing one’s pets, and you may not know which one of them is the lucky one, but you would get the neighbor’s drift. Not so in the quantum world.
In quantum mechanics, the very same statement implies that the two cats are merged in a superposition of cases, including the first cat being alive and the second one dead and the first cat being dead while the second one lives, but also possibilities where both cats are half alive and half dead, or the first cat is one-third alive, while the second feline adds the missing two-thirds of life. In a quantum pair of cats, the fates and conditions of the individual animals get dissolved entirely in the state of the whole. Likewise, in a quantum universe, there are no individual objects. All that exists is merged into a single “One.” READ MORE...
Monday, December 20
Tardigrades and Quantum Entanglement
Quantum life: an electron microscope image of a tardigrade. (Courtesy: Elham Schokraie et al/PloS ONE 7(9): e45682/CC BY 2.5)
Tardigrades are tiny organisms that can survive extreme environments including being chilled to near absolute zero. At these temperatures quantum effects such as entanglement become dominant, so perhaps it is not surprising that a team of physicists has used a chilled tardigrade to create an entangled qubit.
According to a preprint on the arXiv server, the team cooled a tardigrade to below 10 mK and then used it as the dielectric in a capacitor that itself was part of a superconducting transmon qubit. The team says that it then entangled the qubit – tardigrade and all – with another superconducting qubit. The team then warmed up the tardigrade and brought it back to life.
To me, the big question is whether the tardigrade was alive when it was entangled. My curiosity harks back to the now outdated idea that living organisms are “too warm and wet” to partake in quantum processes. Today, scientists believe that some biological processes such as magnetic navigation and perhaps even photosynthesis rely on quantum effects such as entanglement. So perhaps it is possible that the creature was alive and entangled at the same time.
In the preprint, the researchers say that the entangled tardigrade was in a latent state of life called cryptobiosis. They say they have shown that it is “possible to do a quantum and hence a chemical study of a system, without destroying its ability to function biologically”. READ MORE...
Monday, November 1
Thursday, July 15
Quantum Entanglement
Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated or interact in ways such that the quantum state of each particle cannot be described independently of the others, even when the particles are separated by a large distance—instead, a quantum state must be described for the system as a whole.
Measurements of physical properties such as position, momentum, spin, and polarization, performed on entangled particles are found to be appropriately correlated. For example, if a pair of particles are generated in such a way that their total spin is known to be zero, and one particle is found to have clockwise spin on a certain axis, the spin of the other particle, measured on the same axis, will be found to be counterclockwise, as to be expected due to their entanglement. However, this behavior gives rise to paradoxical effects: any measurement of a property of a particle can be seen as acting on that particle (e.g., by collapsing a number of superposed states) and will change the original quantum property by some unknown amount; and in the case of entangled particles, such a measurement will be on the entangled system as a whole. It thus appears that one particle of an entangled pair “knows” what measurement has been performed on the other, and with what outcome, even though there is no known means for such information to be communicated between the particles, which at the time of measurement may be separated by arbitrarily large distances.
up up→|↑〉|↑〉
down down→|↓〉|↓〉
up down→|↑〉|↓〉
down up→|↓〉 |↑〉
Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky, and Nathan Rosen, and several papers by Erwin Schrödinger shortly thereafter, describing what came to be known as the EPR paradox.
Einstein and others considered such behavior to be impossible, as it violated the local realist view of causality (Einstein referring to it as “spooky action at a distance”) and argued that the accepted formulation of quantum mechanics must therefore be incomplete. Later, however, the counterintuitive predictions of quantum mechanics were verified experimentally.
Experiments have been performed involving measuring the polarization or spin of entangled particles in different directions, which—by producing violations of Bell’s inequality—demonstrate statistically that the local realist view cannot be correct. This has been shown to occur even when the measurements are performed more quickly than light could travel between the sites of measurement: there is no lightspeed or slower influence that can pass between the entangled particles. Recent experiments have measured entangled particles within less than one hundredth of a percent of the travel time of light between them. According to the formalism of quantum theory, the effect of measurement happens instantly.It is not possible, however, to use this effect to transmit classical information at faster-than-light speeds.
Quantum entanglement is an area of extremely active research by the physics community, and its effects have been demonstrated experimentally with photons, neutrinos, electrons, molecules the size of buckyballs, and even small diamonds. Research is also focused on the utilization of entanglement effects in communication and computation.
Friday, May 21
Predetermination
Our fate is written in the stars, so the old stories go. It makes for thrilling drama, but it isn't the way the Universe works. But there's an interesting effect of quantum mechanics that might leave an opening for a starry fate, so a team of researchers decided to test the idea.
The idea stems from a subtle effect of quantum physics demonstrated by the Einstein-Podolsky-Rosen (EPR) experiment. One of the basic properties of quantum objects is that their behavior isn't predetermined. The statistical behavior of a quantum system is governed by the laws of quantum theory, but the specific outcome of a particular measurement is indefinite until it's actually performed. This behavior manifests itself in things such as particle-wave duality, where photons and electrons can sometimes behave like particles and sometimes like waves.
One of the more subtle effects related to this property is known as entanglement, when two quantum objects have some kind of connection that allows you to gain information about object A by only interacting with object B. As a basic example, suppose I took a pair of shoes and sent one shoe to my brother in Cleveland, and the other to my sister in Albuquerque. Knowing what a prankster I am, when my sister opens the package and finds a left shoe, she immediately knows her brother was sent the right one. The fact that shoes come in pairs means they are an "entangled" system.
The difference between shoes and quantum entanglement is that the shoes already had a destined outcome. When I mailed the shoes days earlier, the die was already cast. Even if I didn't know which shoe I sent to my brother and sister, I definitely sent one or the other, and there was always a particular shoe in each box. My sister couldn't have opened the box to find a slipper.
The idea stems from a subtle effect of quantum physics demonstrated by the Einstein-Podolsky-Rosen (EPR) experiment. One of the basic properties of quantum objects is that their behavior isn't predetermined. The statistical behavior of a quantum system is governed by the laws of quantum theory, but the specific outcome of a particular measurement is indefinite until it's actually performed. This behavior manifests itself in things such as particle-wave duality, where photons and electrons can sometimes behave like particles and sometimes like waves.
One of the more subtle effects related to this property is known as entanglement, when two quantum objects have some kind of connection that allows you to gain information about object A by only interacting with object B. As a basic example, suppose I took a pair of shoes and sent one shoe to my brother in Cleveland, and the other to my sister in Albuquerque. Knowing what a prankster I am, when my sister opens the package and finds a left shoe, she immediately knows her brother was sent the right one. The fact that shoes come in pairs means they are an "entangled" system.
The difference between shoes and quantum entanglement is that the shoes already had a destined outcome. When I mailed the shoes days earlier, the die was already cast. Even if I didn't know which shoe I sent to my brother and sister, I definitely sent one or the other, and there was always a particular shoe in each box. My sister couldn't have opened the box to find a slipper.
But with quantum entanglement, slippers are possible. In the quantum world, it would be like mailing the boxes where all I know is that they form a pair. It could be shoes, gloves or socks, and neither I nor my siblings would know what the boxes contain until one of them opens a box. But the moment my brother opens the box and finds a left-handed glove, he immediately knows our dear sister will be receiving its right-handed mate. TO READ MORE, CLICK HERE...
Tuesday, March 16
Quantum Entanglement
Frank Wilczek of Quanta Magazine writes:
Quantum entanglement is thought to be one of the trickiest concepts in science, but the core issues are simple. And once understood, entanglement opens up a richer understanding of concepts such as the “many worlds” of quantum theory.
Quantum entanglement is thought to be one of the trickiest concepts in science, but the core issues are simple. And once understood, entanglement opens up a richer understanding of concepts such as the “many worlds” of quantum theory.
An aura of glamorous mystery attaches to the concept of quantum entanglement, and also to the (somehow) related claim that quantum theory requires “many worlds.” Yet in the end those are, or should be, scientific ideas, with down-to-earth meanings and concrete implications. Here I’d like to explain the concepts of entanglement and many worlds as simply and clearly as I know how.
Entanglement is often regarded as a uniquely quantum-mechanical phenomenon, but it is not. In fact, it is enlightening, though somewhat unconventional, to consider a simple non-quantum (or “classical”) version of entanglement first. This enables us to pry the subtlety of entanglement itself apart from the general oddity of quantum theory.
Entanglement arises in situations where we have partial knowledge of the state of two systems. For example, our systems can be two objects that we’ll call c-ons. The “c” is meant to suggest “classical,” but if you’d prefer to have something specific and pleasant in mind, you can think of our c-ons as cakes.
Our c-ons come in two shapes, square or circular, which we identify as their possible states. Then the four possible joint states, for two c-ons, are (square, square), (square, circle), (circle, square), (circle, circle). The following tables show two examples of what the probabilities could be for finding the system in each of those four states. TO READ ENTIRE ARTICLE, Click Here...
Entanglement is often regarded as a uniquely quantum-mechanical phenomenon, but it is not. In fact, it is enlightening, though somewhat unconventional, to consider a simple non-quantum (or “classical”) version of entanglement first. This enables us to pry the subtlety of entanglement itself apart from the general oddity of quantum theory.
Entanglement arises in situations where we have partial knowledge of the state of two systems. For example, our systems can be two objects that we’ll call c-ons. The “c” is meant to suggest “classical,” but if you’d prefer to have something specific and pleasant in mind, you can think of our c-ons as cakes.
Our c-ons come in two shapes, square or circular, which we identify as their possible states. Then the four possible joint states, for two c-ons, are (square, square), (square, circle), (circle, square), (circle, circle). The following tables show two examples of what the probabilities could be for finding the system in each of those four states. TO READ ENTIRE ARTICLE, Click Here...
Subscribe to:
Posts (Atom)