Showing posts with label Einstein. Show all posts
Showing posts with label Einstein. Show all posts

Saturday, May 11

A Glitch in Einstein's Theory


This James Webb Space Telescope deep-field image shows some of the earliest and most distant galaxies ever seen. (Image credit: NASA, ESA, CSA and STScI)






There is no denying the awesome predictive power of Albert Einstein's 1915 theory of gravity, general relativity — yet, the theory still has inconsistencies when it comes to calculating its effect on vast distances. And new research suggests these inconsistencies could be the result of a "cosmic glitch" in gravity itself.


In the 109 years since it was first formulated, general relativity has remained our finest description of gravity on a galactic scale; time and again, experiments have confirmed its accuracy. This theory has also been used to predict aspects of the universe that would later be observationally confirmed. This includes the Big Bang, the existence of black holes, the gravitational lensing of light and tiny ripples in spacetime called gravitational waves.


Yet, like the Newtonian theory of gravity that it surpassed, general relativity may not offer us the full picture of this enigmatic force.  READ MORE...

Saturday, February 24

A Preordained Universe Implied by Quantum Theory


Was there ever any choice in the Universe being as it is? Albert Einstein could have been wondering about this when he remarked to mathematician Ernst Strauss: “What I’m really interested in is whether God could have made the world in a different way; that is, whether the necessity of logical simplicity leaves any freedom at all.”

US physicist James Hartle, who died earlier this year aged 83, made seminal contributions to this continuing debate. Early in the twentieth century, the advent of quantum theory seemed to have blown out of the water ideas from classical physics that the evolution of the Universe is ‘deterministic’.

Hartle contributed to a remarkable proposal that, if correct, completely reverses a conventional story about determinism’s rise with classical physics, and its subsequent fall with quantum theory. A quantum Universe might, in fact, be more deterministic than a classical one — and for all its apparent uncertainties, quantum theory might better explain why the Universe is the one it is, and not some other version.     READ MORE...

Monday, February 19

Einstein's Discoveries Lead to Gravitational Laser


Einstein’s work was crucial for the current understanding of gravitational waves and the development of stimulated radiation that culminated in the invention of lasers. Dr Jing Liu, from the University of Chinese Academy of Sciences, has combined the two into an intriguing proposal: it is possible to create the gravitational equivalent of a laser.

Let’s start with the basics. The word laser stands for Light Amplification by Stimulated Emission of Radiation. A laser is made of light all with roughly the same frequency (or, in other words, it is monochrome) and it is coherent, so it can be focused to a tight spot or can be used to create ultrashort pulses. By stimulating a quantum mechanical energy transition, it is possible to get light out all with the same frequency.

Natural lasers exist and they are called masers – with the "m" standing for microwaves. These astrophysical masers come from a bunch of sources, including comets, stellar atmosphere, and even the aurorae of Jupiter. So if light can make a laser, could gravity as well?   READ MORE...

Thursday, December 14

A Cosmology Mystery

A recent study proposes that the “Hubble tension,” a discrepancy in measurements of the universe’s expansion rate, can be resolved using the alternative MOND theory of gravity. This theory suggests local matter density variations account for the observed discrepancies.



Study by the Universities of Bonn and St. Andrews proposes a new possible explanation for the Hubble tension.

The universe is expanding. How fast it does so is described by the so-called Hubble-Lemaitre constant. But there is a dispute about how big this constant actually is: Different measurement methods provide contradictory values. This so-called “Hubble tension” poses a puzzle for cosmologists. Researchers from the Universities of Bonn and St. Andrews are now proposing a new solution: Using an alternative theory of gravity, the discrepancy in the measured values can be easily explained — the Hubble tension disappears. The study has now been published in the Monthly Notices of the Royal Astronomical Society (MNRAS).
Understanding the Universe’s Expansion

The expansion of the universe causes the galaxies to move away from each other. The speed at which they do this is proportional to the distance between them. For instance, if galaxy A is twice as far away from Earth as galaxy B, its distance from us also grows twice as fast. The US astronomer Edwin Hubble was one of the first to recognize this connection.  READ MORE...

Tuesday, October 24

The Physics of Immortality


From your own experiential perspective, the laws of physics are stacked against you if you ever hope to achieve immortality. From a thermodynamic perspective, every system tends toward increasing entropy-and-disorder, and the only way you can combat that is by constantly inputting an external source of energy; in other words, your body and mind will eventually break down. 

And although you might try to leverage the power of relativity to dilate time and slow its passage, that will never work from your individual perspective; time only dilates or slows relative to an observer in a different reference frame from your own.

While this may confine a human’s dream of immortality to solutions that rely on technological enhancements or science-fiction level technology that relies on novel physical laws and/or phenomena, there’s still plenty for relativity to say about living forever: at least, relative to the rest of the Universe. 

While nearly all of us living today will certainly be dead in another century, should we all remain on Earth, the lessons from both special and general relativity teach us that there are a few physical situations that we should strive for if we truly want to maximize the amount of time that we can spend as living creatures within our Universe. Here’s the key insight we all need to understand.

The foundation of relativity: spacetime

Even though we normally credit Einstein with overcoming the disparate ideas of space and time that had held sway since the time of Newton and coming up with the revolutionary concept of a four-dimensional fabric that weaves them both together — spacetime — it wasn’t Einstein at all that came up with that key insight. 

It’s true that 1905 was indeed a banner year for Einstein, with the two key insights that powered special relativity key among them:
  1. That the laws of physics are invariant, or that they do not change, in all non-accelerating frames of reference.
  2. And that the speed of light in a vacuum, c, is identical for all observers, regardless of their motion or of the motion of the light source in question.

Monday, October 2

Tachyons Are Cosmic Engines of Time Travel

A reactor core gives off the blue glow of Cherenkov radiation — one of the few ways in which a tachyon may be detected.   Image by Argonne National Laboratory.



Interstellar travel is the greatest challenge mankind will ever face. Not only because it’s so grandiose and marked by impressive shimmering spacecraft — tall and boundless, scaled by materials born of human ingenuity — but because it’s a necessary step in exploration and understanding of the cosmos. 


It becomes ever more necessary as time goes on, and ever more difficult. This is the complication we face.


Soon, even speeds approaching that of light may not be enough as our universe continues to expand at an enormous rate. The light of our closest star systems and galaxies will struggle to make their way to us, their existence visible only in our books and our computer programs which will have to remind us that the surrounding sky didn’t always look so empty. 


At lightspeed today travel between star systems would take years for a one-way trip. As much of a feat as luminal speeds are, they may someday prove to be insufficient themselves. But where the speed of light has presented to us an obstruction, so too is there a peculiar hope. There are, after all, two sides to every limit.


A comment Einstein makes in his 1905 paper reads, “…velocities greater than that of light have no possibility of existence.” 


But modern science and mathematics have found clever ways around this, loopholes which permit superluminal speeds without contradicting the theory of relativity.  READ MORE...

Sunday, October 1

Einstein Was Wrong About Gravity


Einstein's theory of gravity—general relativity—has been very successful for more than a century. However, it has theoretical shortcomings. This is not surprising: the theory predicts its own failure at spacetime singularities inside black holes—and the Big Bang itself.

Unlike physical theories describing the other three fundamental forces in physics—the electromagnetic and the strong and weak nuclear interactions—the general theory of relativity has only been tested in weak gravity.

Deviations of gravity from general relativity are by no means excluded nor tested everywhere in the universe. And, according to theoretical physicists, deviation must happen.

Deviations and quantum mechanics
According to a theory initially proposed by Georges Lemaître and widely accepted by the astronomical community, our universe originated in a Big Bang. 

Other singularities hide inside black holes: Space and time cease to have meaning there, while quantities such as energy density and pressure become infinite. These signal that Einstein's theory is failing there and must be replaced with a more fundamental one.

Naively, spacetime singularities should be resolved by quantum mechanics, which apply at very small scales.

Quantum physics relies on two simple ideas: point particles make no sense; and the Heisenberg uncertainty principle, which states that one can never know the value of certain pairs of quantities with absolute precision—for example, the position and velocity of a particle. 

This is because particles should not be thought of as points but as waves; at small scales they behave as waves of matter.  READ MORE...

Monday, September 4

Speed of Light


Einstein’s special theory of relativity governs our understanding of both the flow of time and the speed at which objects can move. In special relativity, the speed of light is the ultimate speed limit to the universe. Nothing can travel faster than it. Every single moving object in the universe is constrained by that fundamental limit.

Speed of Light and Sound
This isn’t something like the speed of sound. Early scientists wondered if we could ever go faster than that speed, not because of some fundamental rule of the universe, but because we didn’t know if our engineering and materials science capabilities could withstand the extreme turbulence generated by moving at such speeds. But everyday objects already surpass the speed of sound. For example, the crack of a whip is caused by the tip creating a sonic boom as it travels faster than the sound speed.

The problem with trying to surpass the speed of light is that as you go faster, the more kinetic energy you have. But relativity tells us that energy is the same as mass, so the faster you go the more massive you become (and yes, this means that a moving baseball has more mass than one standing still, but that’s a tiny effect).

As you approach the speed of light, your mass balloons up to infinity. The closer you get to the speed of light, the more out of control your mass becomes. With higher masses, you must push yourself harder to accelerate, and you quickly find yourself in a position where it would take an infinite amount of energy to overcome light speed.

Exploring Light Speed
This isn’t just a matter of clever engineering or figuring out some trick – this is built into the fabric of the universe.

That said, there are proposals out there for designing specialized devices that could supposedly overcome this limit without outright breaking relativity. These concepts work because special relativity is a law of local physics: It tells you that you can never measure nearby motion going faster than light speed.  READ MORE...

Wednesday, August 23

Theory of Gravity Contradicted


Einstein's Theory of General Relativity, an immensely important update to Newton's Law of Universal Gravitation, is currently our best approximation of how the universe ticks.

But there are some holes in Einstein's theory, including some gravitational weirdness around low acceleration “wide binary” stars.

A new study claims that the behavior of these slow-moving celestial objects can’t be explained by a Newton-Einstein theory, which relies on dark matter, but could be explained with an idea known as Modified Newtonian Dynamics, or MOND.

In 1687, English physicist Isaac Newton published his famous Law of Universal Gravitation. The idea that all objects attract in proportion to their mass was a revolutionary idea that became a huge boon for understanding the ways of the universe. 

But even Newton’s influential work had its limitations—specifically, it couldn’t explain gravitational phenomena such as black holes and gravitational waves. Thankfully, Albert Einstein came around in the early 20th century to help patch things up a bit with his Theory of General Relativity.

But space is a big place, and even Einsteins sometimes meet their limit. One of the most well-known of these limits is a black hole’s center, or singularity, where Einstein’s famous theory appears to break down completely. 

Now, a new study from scientists at South Korea’s Sejong University suggests that another limit to Newton and Einstein’s conception of gravity can be found in the orbital motions of long-period, widely separated, binary stars—also known simply as “wide binaries.” The results of this study were published this month in The Astrophysical Journal.     READ MORE...

Friday, July 7

Space-Time Distortions


Observing time distortions could show whether Einstein's theory of general relativity accounts for the mysteries of dark matter and dark energy.

Scientists could soon test Einstein's theory of general relativity by measuring the distortion of time.


According to new research published June 22 in the journal Nature Astronomy, the newly proposed method turns the edge of space and time into a vast cosmic lab to investigate if general relativity can account for dark matter  -  a mysterious, invisible form of matter that can only be inferred by its gravitational influence on the universe's visible matter and energy -  as well as the accelerating expansion of the universe due to dark energy. The method is ready to be tested on future surveys of the deep universe, according to the study authors.

General relativity states that gravity is the result of mass warping the fabric of space and time, which Einstein lumped into a four-dimensional entity called space-time. According to relativity, time passes more slowly close to a massive object than it does in a mass-less vacuum. This change in the passing of time is called time distortion.

Since its introduction in 1915, general relativity has been tested extensively and has become our best description of gravity on tremendous scales. But scientists aren't yet sure if it can explain invisible dark matter and dark energy, which together account for around 95% of the energy and matter in the universe.  READ MORE...

Saturday, April 15

Invisible Dark Matter


Some of the tendrils of the cosmic web as visualized by the Evolution and Assembly of Galaxies 
and their Environments (EAGLE) Project. (Image credit: EAGLE Project)




Light produced just 380,000 years after the Big Bang was warped by the universe's dark matter exactly the way Einstein predicted it would be.

Astronomers have made the most detailed map ever of mysterious dark matter using the universe’s very first light, and the "groundbreaking" image has possibly proved Einstein right yet again.


The new image, made using 14 billion-year-old light from the turbulent aftermath of the Big Bang, shows the enormous matter tendrils that formed not long after the universe exploded into being. It turns out the shapes of these tendrils are remarkably similar to those predicted using Einstein's theory of general relativity.

The new result contradicts previous dark matter maps that suggested the cosmic web — the gigantic network of crisscrossing celestial superhighways paved with hydrogen gas and dark matter that spans the universe — is less clumpy than Einstein's theory predicted. The astronomers presented their findings April 11 at the Future Science with CMB x LSS conference at Japan's Yukawa Institute for Theoretical Physics.  READ MORE...

Monday, August 29

Probing Dark Energy


Dark energy illustration. Credit: Visualization by Frank Summers, Space Telescope Science Institute. Simulation by Martin White, UC Berkeley and Lars Hernquist, Harvard University






Could one of the biggest puzzles in astrophysics be solved by reworking Albert Einstein’s theory of gravity? Not yet, according to a new study co-authored by NASA scientists.

The universe is expanding at an accelerating rate, and physicists don’t know why. This phenomenon seems to contradict everything scientists understand about gravity’s effect on the cosmos: It’s as if you threw an apple in the air and instead of coming back down, it continued upward, faster and faster. The cause of the cosmic acceleration, dubbed dark energy, remains a mystery.

A new study marks the latest effort to determine whether this is all simply a misunderstanding: that expectations for how gravity works at the scale of the entire universe are flawed or incomplete. This potential misunderstanding might help researchers explain dark energy. However, the study – one of the most precise tests yet of Albert Einstein’s theory of gravity at cosmic scales – finds that the current understanding still appears to be correct. The study was from the international Dark Energy Survey, using the Victor M. Blanco 4-meter Telescope in Chile.


The results, authored by a group of scientists that includes some from NASA’s Jet Propulsion Laboratory (JPL), were presented Wednesday, August 24, at the International Conference on Particle Physics and Cosmology (COSMO’22) in Rio de Janeiro. 

The work helps set the stage for two upcoming space telescopes that will probe our understanding of gravity with even higher precision than the new study and perhaps finally solve the mystery.  READ MORE...

Thursday, July 21

Faster Than Light Travel


For decades, we've dreamed of visiting other star systems. There's just one problem – they're so far away, with conventional spaceflight it would take tens of thousands of years to reach even the closest one.


Physicists are not the kind of people who give up easily, though. Give them an impossible dream, and they'll give you an incredible, hypothetical way of making it a reality. Maybe.

In a 2021 study by physicist Erik Lentz from Göttingen University in Germany, we may have a viable solution to the dilemma, and it's one that could turn out to be more feasible than other would-be warp drives.

This is an area that attracts plenty of bright ideas, each offering a different approach to solving the puzzle of faster-than-light travel: achieving a means of sending something across space at superluminal speeds.

There are some problems with this notion, however. Within conventional physics, in accordance with Albert Einstein's theories of relativity, there's no real way to reach or exceed the speed of light, which is something we'd need for any journey measured in light-years.

That hasn't stopped physicists from trying to break this universal speed limit, though.

While pushing matter past the speed of light will always be a big no-no, spacetime itself has no such rule. In fact, the far reaches of the Universe are already stretching away faster than its light could ever hope to match.  READ MORE...

Saturday, May 21

Einstein Was Right


According to Einstein's relativity, if you move relative to another observer and come back to their starting point, you'll age less than whatever remains stationary. Einstein also tells us that the curvature of space itself, depending on the strength of gravitation at your location, also affects how fast or slow your clock runs.

By flying planes both with and against Earth's rotation, and returning them all to the same starting point, we tested Einstein as never before. 

Here's what we learned.

In 1905, our conception of the Universe changed forever when Einstein put forth his special theory of relativity. Prior to Einstein, scientists were able to describe every “point” in the Universe with the use of just four coordinates: three spatial positions for each of the three dimensions, plus a time to indicate which moment any particular event occurred. 

All of this changed when Einstein had the fundamental realization that every single observer in the Universe, dependent on their motion and location, each had a unique perspective on where and when every event in the Universe would have occurred.

Whenever one observer moves through the Universe relative to another, the observer-in-motion will experience time dilation: where their clocks run slower relative to the observer-at-rest. 

Based on this, Einstein suggested that we could make use of two clocks to put this to the test: one at the equator, which speeds around the Earth at approximately 1670 km/hr (1038 mph), and one at the Earth’s poles, which is at rest as the Earth rotates about its axis.  READ MORE...

Thursday, April 21

Weirdness of Quantum Mechanics


Quantum mechanics has a way of taking your mind to places it just doesn’t want to go. Famously hard to understand and impossible to intuit, concepts such as quantum entanglement and superposition really make sense only when viewed through a mathematical lens. Plain language most often leads you down dead ends or false paths that end miles away from reality, with carelessly chosen words propagating misunderstandings at the speed of the internet.

A well-known case in point comes from Albert Einstein. The baked-in weirdness of quantum mechanics troubled him, leading to two celebrated quotes. One— “God does not play dice with the universe”—expressed his unease about the reign of probability over certainty in the quantum realm.

In the other quote, Einstein challenged the notion of the probabilistic correlations among particles, known as quantum entanglement, saying, “I cannot seriously believe in it because the theory cannot be reconciled with the idea that physics should represent a reality in time and space, free from spooky action at a distance.”

That last phrase has launched a thousand misguided speculations about faster-than-light communications. The main problem lies in the word action. It leans toward cause and effect—something directly affecting something else—and implies an unknown mechanism instantaneously operating on widely separated particles. 

That influence would clearly violate both the locality principle in physics (objects are only influenced by what’s nearby) and Einstein’s own Special Theory of Relativity, which set the universal speed limit at the speed of light, a theory backed up by observational evidence for a hundred years.

Entanglement refers to the condition of a system composed of atomic-scale particles whose states cannot be fully described independently or individually. John Preskill of Caltech described the situation with a literary metaphor. Someone who read 10 pages of a 100-page book composed in the classical, or non-quantum, physics world, would learn 10% of the book. 

Reading 10 pages of a quantum book would reveal almost nothing about the book’s contents. As Preskill says, “nearly all the information in the book is encoded in the correlations among the pages.” This principle of quantum mechanics has practical application as the basis for the power of quantum computing and other technologies because you can store information globally within the quantum system.  READ MORE...

Thursday, March 24

Lost in Spacetime

Einstein’s forgotten twisted universe


There’s a kind of inevitability about the fact that, if you write a regular newsletter about fundamental physics, you’ll regularly find yourself banging on about Albert Einstein. As much as it comes with the job, I also make no apology for it: he is a towering figure in the history of not just fundamental physics, but science generally.

A point that historians of science sometimes make about his most monumental achievement, the general theory of relativity, is that, pretty much uniquely, it was a theory that didn’t have to be. When you look at the origins of something like Charles Darwin’s theory of evolution by natural selection, for example – not to diminish his magisterial accomplishment in any way – you’ll find that other people had been scratching around similar ideas surrounding the origin and change of species for some time as a response to the burgeoning fossil record, among other discoveries.


Even Einstein’s special relativity, the precursor to general relativity that first introduced the idea of warping space and time, responded to a clear need (first distinctly identified with the advent of James Clerk Maxwell’s laws of electromagnetism in the 1860s) to explain why the speed of light appeared to be an absolute constant.


When Einstein presented general relativity to the world in 1915, there was nothing like that. We had a perfectly good working theory of gravity, the one developed by Isaac Newton more than two centuries earlier. True, there was a tiny problem in that it couldn’t explain some small wobbles in the orbit of Mercury, but they weren’t of the size that demanded we tear up our whole understanding of space, time, matter and the relationship between them. But pretty much everything we know (and don’t know) about the wider universe today stems from general relativity: the expanding big bang universe and the standard model of cosmology, dark matter and energy, black holes, gravitational waves, you name it.

So why am I banging on about this? Principally because, boy, do we need a new idea in cosmology now – and in a weird twist of history, it might just be Einstein who supplies it. I’m talking about an intriguing feature by astrophysicist Paul M. Sutter in the magazine last month . It deals with perhaps general relativity’s greatest (perceived, at least) weakness – the way it doesn’t mesh with other bits of physics, which are all explained by quantum theory these days. The mismatch exercised Einstein a great deal, and he spent much of his later years engaged in a fruitless quest to unify all of physics.  READ MORE...

Wednesday, March 16

Quantum Mechanics and Free Will


Credit: francescoch/Getty Images

A conjecture called superdeterminism, outlined decades ago, is a response to several peculiarities of quantum mechanics: the apparent randomness of quantum events; their apparent dependence on human observation, or measurement; and the apparent ability of a measurement in one place to determine, instantly, the outcome of a measurement elsewhere, an effect called nonlocality.

Einstein, who derided nonlocality as “spooky action at a distance,” insisted that quantum mechanics must be incomplete; there must be hidden variables that the theory overlooks. Superdeterminism is a radical hidden-variables theory proposed by physicist John Bell. He is renowned for a 1964 theorem, now named after him, that dramatically exposes the nonlocality of quantum mechanics.

Bell said in a BBC interview in 1985 that the puzzle of nonlocality vanishes if you assume that “the world is superdeterministic, with not just inanimate nature running on behind-the-scenes clockwork, but with our behavior, including our belief that we are free to choose to do one experiment rather than another, absolutely predetermined.”

In a recent video, physicist Sabine Hossenfelder, whose work I admire, notes that superdeterminism eliminates the apparent randomness of quantum mechanics. “In quantum mechanics,” she explains, “we can only predict probabilities for measurement outcomes, rather than the measurement outcomes themselves. The outcomes are not determined, so quantum mechanics is indeterministic. Superdeterminism returns us to determinism.”

“The reason we can’t predict the outcome of a quantum measurement,” she explains, “is that we are missing information,” that is, hidden variables. Superdeterminism, she notes, gets rid of the measurement problem and nonlocality as well as randomness. Hidden variables determine in advance how physicists carry out the experiments; physicists might think they are choosing one option over another, but they aren’t. Hossenfelder calls free will “logically incoherent nonsense.”

Hossenfelder predicts that physicists might be able to confirm superdeterminism experimentally. “At some point,” she says, “it’ll just become obvious that measurement outcomes are actually much more predictable than quantum mechanics says. Indeed, maybe someone already has the data, they just haven’t analyzed it the right way.” Hossenfelder defends superdeterminism in more detail in a technical paper written with physicist Tim Palmer.  

AUTHOR  -  John Horgan directs the Center for Science Writings at the Stevens Institute of Technology. His books include The End of Science, The End of War and Mind-Body Problems, available for free at mindbodyproblems.com. For many years he wrote the popular blog Cross Check for Scientific American.


TO READ MORE, CLICK HERE...


Monday, October 11

Was Einstein Wrong?

As in history, revolutions are the lifeblood of science. Bubbling undercurrents of disquiet boil over until a new regime emerges to seize power. Then everyone's attention turns to toppling their new ruler. The king is dead, long live the king.

This has happened many times in the history of physics and astronomy. First, we thought Earth was at the center of the solar system — an idea that stood for over 1,000 years. Then Copernicus stuck his neck out to say that the whole system would be a lot simpler if we are just another planet orbiting the sun. Despite much initial opposition, the old geocentric picture eventually buckled under the weight of evidence from the newly invented telescope.

Then Newton came along to explain that gravity is why the planets orbit the sun. He said all objects with mass have a gravitational attraction towards each other. According to his ideas we orbit the sun because it is pulling on us, the moon orbits Earth because we are pulling on it. 

Newton ruled for two-and-a-half centuries before Albert Einstein turned up in 1915 to usurp him with his General Theory of Relativity. This new picture neatly explained inconsistencies in Mercury's orbit, and was famously confirmed by observations of a solar eclipse off the coast of Africa in 1919.  TO READ MORE, CLICK HERE...

Monday, October 4

How Einstein Imagined Spacetime

Something happened in Europe at the start of the 20th century. What happened was, human beings began to sense the reality of hyperspace. The thing called hyperspace, in movies like Star Wars, the thing that you reach by traveling faster than light—it started to shimmer into existence in the early 1900s. 

Like a gorgeous mirage, hyperspace wavered into being, in philosophy, science, literature and art. The science is Albert Einstein’s general theory of relativity. There are two kinds of art I want to share. First, the water lily paintings of Claude Monet. Secondly, there’s that amazing innovation in narrative prose—the stream of consciousness. Let’s start with the paintings. They make it so obvious.

The Orangerie is quite an experience. “Orangerie” means a place where they grow oranges. But this is a place where they grow experiences of gorgeous paintings.

The Orangerie is a pair of oval-shaped rooms in the Jardin des Tuileries in Paris. In these rooms, you can visit Claude Monet’s astounding water lilies paintings. It’s more than visiting. It’s being inside them. It’s not an experience you can forget. 

Immersive, strangely anticipatory of VR, you find yourself surrounded by gigantic ovals of color. An oval is a circle that’s been squeezed, just like spacetime isn’t totally regular but is squeezed and stretched by gravity. An oval is also an egg, an obvious container that isn’t just a container, but a living habitat for an embryo. The visitors are the embryos. And Monet’s paintings are the yolk, a gorgeous, mauve-blue-green yolk.

Floating in the yolk are little blobs, the water lilies. The water lilies appear not as objects in empty space. They melt into the water. It’s as if they are manifestations of the warp and flow of Monet’s beloved pond at Giverny. It’s as if the water lilies are an intrinsic part of their habitat: go figure. 

Ecological thought holds this to be true, a truism, even. But imagine what it was like to see that, first. You’re Claude Monet, and you’re seeing the slowly rippling, smooth, transparent liquid of your pond at Giverny. The pond contains so much else—water weeds, shadows, the sky… and water lilies.  TO READ MORE, CLICK HERE...

Wednesday, September 29

Einstein Ring

One of the most spectacular Einstein rings ever seen in space is enabling us to see what's happening in a galaxy almost at the dawn of time.

The smears of light called the Molten Ring, stretched out and warped by gravitational fields, are magnifications and duplications of a galaxy whose light has traveled a whopping 9.4 billion light-years. This magnification has given us a rare insight into the stellar 'baby boom' when the Universe was still in its infancy.

The early evolution of the Universe is a difficult time to understand. It blinked into existence as we understand it roughly 13.8 billion years ago, with the first light emerging (we think) around 1 billion years later. Light traveling for that amount of time is faint, the sources of it small, and dust obscures much of it.

Even the most intrinsically luminous objects are extraordinarily hard to see across that gulf of space-time, so there are large gaps in our understanding of how the Universe assembled itself from primordial soup.

But sometimes the Universe itself offers us a helping hand. If a massive object sits between us and a more distant object, a magnification effect occurs due to the gravitational curvature of space-time around the closer object.

Illustration of gravitational lensing. (NASA, ESA & L. Calçada)

Any light that then travels through this space-time follows this curvature and enters our telescopes smeared and distorted – but also magnified and duplicated. These are called Einstein rings, because the effect was predicted by, you guessed it, Albert Einstein.

The phenomenon itself is called gravitational lensing, and while it has given us some absolutely amazing images, it also affords us brilliant opportunities to combine our own magnification capabilities – telescopes – with those of the Universe to see things that might otherwise be too far to make out clearly, or at all.  READ MORE...