Saturday, May 21

Fusion Energy Unchained

Illustration of cloud-like ionized plasma in the ITER fusion reactor tokamak. Credit: ITER

Physicists at EPFL, within a large European collaboration, have revised one of the fundamental laws that has been foundational to plasma and fusion research for over three decades, even governing the design of megaprojects like ITER. The update demonstrates that we can actually safely utilize more hydrogen fuel in fusion reactors, and therefore obtain more energy than previously thought.

Fusion is one of the most promising future energy sources . It involves two atomic nuclei merging into one, thereby releasing enormous amounts of energy. In fact, we experience fusion every day: the Sun’s warmth comes from hydrogen nuclei fusing into heavier helium atoms.

There is currently an international fusion research megaproject called ITER that seeks to replicate the fusion processes of the Sun to create energy on the Earth. Its goal is to generate high-temperature plasma that provides the right environment for fusion to occur, producing energy.

Plasmas — an ionized state of matter similar to a gas – are made up of positively charged nuclei and negatively charged electrons, and are almost a million times less dense than the air we breathe. Plasmas are created by subjecting “the fusion fuel” – hydrogen atoms – to extremely high temperatures (10 times that of the core of the Sun), forcing electrons to separate from their atomic nuclei. In a fusion reactor, the process takes place inside a donut-shaped (“toroidal”) structure called a “tokamak.”  READ MORE...

No comments:

Post a Comment