Showing posts with label University of Wisconsin. Show all posts
Showing posts with label University of Wisconsin. Show all posts

Saturday, August 13

Link Between Cancer Drivers


An unexpected relationship between two of the most frequent cancer-causing factors might lead to more effective drugs.

According to a recent study from the University of Wisconsin-Madison, two of the most common genetic changes that result in cancerous cells, which were previously believed to be distinct and controlled by different cellular signals, are really working together.

To treat cancer, researchers have so far concentrated on developing medications that either inhibit one or the other. Treatments that work better could result from an understanding of their cooperative effects.

Cells manufacture a protein called p53, which functions within the cell nucleus to react to stress, but mutations in the gene that makes p53 are the most common genetic abnormalities in cancer. Runaway cell proliferation in cancer is also often linked to mutations that activate a cell’s surface-located pathway called PI3K/Akt.

Cellular signaling pathways allow cells to accomplish important communications tasks that maintain healthy cell functions. The process is a bit like sending mail, which requires a specific series of steps and appropriate stamps and marks on the envelope to deliver a letter to the correct address.  READ MORE...

Tuesday, August 9

We Were Ocean Dwellers in Early Life


By studying the genetic tree of life, scientists have determined that the first life on Earth may have lived underwater, where it would be shielded from harmful ultraviolet light from the sun.

The origin of life on Earth remains a mystery, but scientists are slowly putting together genetic puzzle pieces to learn more about how the first life on Earth lived, between 2.5 and 4 billion years ago. Now, scientists from the University of Wisconsin-Madison and the University of California, Riverside, have used machine learning to trace the evolutionary development of a protein-based molecule called rhodopsin back to some of the most ancient microbial life-forms to have existed on Earth. The results may also inform the search for life beyond Earth, the scientists argue.

"It's like taking the DNA of many grandchildren to reproduce the DNA of their grandparents," astrobiologist Edward Schwieterman of the University of California Riverside, a co-author on the new research, said in a statement(opens in new tab).

The researchers suspect that rhodopsin provided the battery power for early life, turning light from the sun into energy. On modern Earth, rhodopsin can absorb blue, green, yellow and orange light. (It is also tangentially related to the light-absorbing rods and cones that our eyes use to see the world.)

Schwieterman and his colleagues began by using machine learning to look for the genes that control rhodopsin in as wide a swathe of life on Earth as possible, then identifying those genes that had the longest lineages.

This analysis suggested that ancient rhodopsin absorbed just blue and green light. This reduced capability makes sense in a scenario in which early life may have originated in the ocean, where blue and green wavelengths of light penetrate deeper into a column of water than other optical wavelengths: Being able to absorb these wavelengths to derive energy would have been vitally important.  READ MORE...

Saturday, May 28

Grown in Moon Dirt

This thale cress seedling sprouted from a seed potted in lunar dirt collected during some of the 
Apollo missions.     TYLER JONES, IFAS/UF



That’s one small stem for a plant, one giant leap for plant science.

In a tiny, lab-grown garden, the first seeds ever sown in lunar dirt have sprouted. This small crop, planted in samples returned by Apollo missions, offers hope that astronauts could someday grow their own food on the moon.

But plants potted in lunar dirt grew more slowly and were scrawnier than others grown in volcanic material from Earth, researchers report May 12 in Communications Biology. That finding suggests that farming on the moon would take a lot more than a green thumb.

“Ah! It’s so cool!” says University of Wisconsin–Madison astrobotanist Richard Barker of the experiment.

“Ever since these samples came back, there’s been botanists that wanted to know what would happen if you grew plants in them,” says Barker, who wasn’t involved in the study. “But everyone knows those precious samples … are priceless, and so you can understand why [NASA was] reluctant to release them.”

Now, NASA’s upcoming plans to send astronauts back to the moon as part of its Artemis program have offered a new incentive to examine that precious dirt and explore how lunar resources could support long-term missions (SN: 7/15/19).

The dirt, or regolith, that covers the moon is basically a gardener’s worst nightmare. This fine powder of razor-sharp bits is full of metallic iron, rather than the oxidized kind that is palatable to plants (SN: 9/15/20). It’s also full of tiny glass shards forged by space rocks pelting the moon. What it is not full of is nitrogen, phosphorus or much else plants need to grow. So, even though scientists have gotten pretty good at coaxing plants to grow in fake moon dust made of earthly materials, no one knew whether newborn plants could put down their delicate roots in the real stuff.  READ MORE...