Showing posts with label Superconductivity. Show all posts
Showing posts with label Superconductivity. Show all posts
Monday, March 18
Device Acts Like Superconductivity Switch
In particle colliders that reveal the hidden secrets of the tiniest constituents of our universe, minute particles leave behind extremely faint electrical traces when they are generated in enormous collisions. Some detectors in these facilities use superconductivity—a phenomenon in which electricity is carried with zero resistance at low temperatures—to function.
For scientists to more accurately observe the behavior of these particles, these weak electrical signals, or currents, need to be multiplied by an instrument capable of turning a faint electrical flicker into a real jolt. READ MORE...
Friday, March 1
Superconductivity
An international research team has made a pivotal discovery in high-temperature superconductivity by quantifying the pseudogap pairing in fermionic lithium atoms. This discovery not only deepens our understanding of quantum superfluidity but also holds promise for enhancing global energy efficiency through advancements in computing, storage, and sensor technologies. Credit: SciTechDaily.com
Breakthrough in High-Temperature Superconductivity
An international team of scientists has made a new discovery that may help to unlock the microscopic mystery of high-temperature superconductivity and address the world’s energy problems.
In a paper published in the journal Nature, Swinburne University of Technology’s Associate Professor Hui Hu collaborated with researchers at the University of Science and Technology of China (USTC) in a new experimental observation quantifying the pseudogap pairing in a strongly attractive interacting cloud of fermionic lithium atoms. READ MORE...
- Scientists have made a discovery that may help to unlock the microscopic mystery of high-temperature superconductivity
- The paper published in Nature could help address the world’s energy problems
- The new experimental observation quantifies the pseudogap pairing in a strongly attractive interacting cloud of fermionic lithium atoms
An international team of scientists has made a new discovery that may help to unlock the microscopic mystery of high-temperature superconductivity and address the world’s energy problems.
In a paper published in the journal Nature, Swinburne University of Technology’s Associate Professor Hui Hu collaborated with researchers at the University of Science and Technology of China (USTC) in a new experimental observation quantifying the pseudogap pairing in a strongly attractive interacting cloud of fermionic lithium atoms. READ MORE...
Saturday, September 24
Discovering an Invisible Phenomenon
It may be possible to develop superconductors that operate at room temperature with further knowledge of the relationship between spin liquids and superconductivity, which would transform our daily lives.
Superconductors offer enormous technical and economic promise for applications such as high-speed hovertrains, MRI machines, efficient power lines, quantum computing, and other technologies.
However, their usefulness is limited since superconductivity requires extremely low temperatures. It is highly challenging to integrate them with modern technology because of this demanding and costly requirement.
The electrical resistance of a superconductor has a specific critical temperature beyond which it drops suddenly to zero, unlike an ordinary metallic conductor, whose resistance declines gradually as temperature is reduced, even down to near absolute zero. READ MORE...
The electrical resistance of a superconductor has a specific critical temperature beyond which it drops suddenly to zero, unlike an ordinary metallic conductor, whose resistance declines gradually as temperature is reduced, even down to near absolute zero. READ MORE...
Tuesday, August 9
Room Temperature Superconductivity
Less than two years after shocking the science world with the discovery of a material capable of room-temperature superconductivity, a team of UNLV physicists has upped the ante once again by reproducing the feat at the lowest pressure ever recorded.
In other words, science is closer than it's ever been to a usable, replicable material that could one day revolutionize how energy is transported. UNLV physicist Ashkan Salamat and colleague Ranga Dias, a physicist with the University of Rochester, made international headlines in 2020 by reporting room-temperature superconductivity for the first time. To achieve the feat, the scientists chemically synthesized a mix of carbon, sulfur, and hydrogen first into a metallic state, and then even further into a room-temperature superconducting state using extreme pressure—267 gigapascals—conditions you'd only find in nature near the center of the Earth. Fast forward less than two years, and the team is now able to complete the feat at just 91 GPa—roughly one-third the pressure initially reported. The new findings were published this month as an advance article in the journal Chemical Communications.
A super discovery
Through a detailed tuning of the composition of carbon, sulfur, and hydrogen used in the original breakthrough, scientists are able to produce a material at a lower pressure that retains its state of superconductivity.
"These are pressures at a level difficult to comprehend and evaluate outside of the lab, but our current trajectory shows that it's possible achieve relatively high superconducting temperatures at consistently lower pressures—which is our ultimate goal," said study lead author Gregory Alexander Smith, a graduate student researcher with UNLV's Nevada Extreme Conditions Laboratory (NEXCL). "At the end of the day, if we want to make devices beneficial to societal needs, then we have to reduce the pressure needed to create them." READ MORE...
Subscribe to:
Posts (Atom)