It may be possible to develop superconductors that operate at room temperature with further knowledge of the relationship between spin liquids and superconductivity, which would transform our daily lives.
Superconductors offer enormous technical and economic promise for applications such as high-speed hovertrains, MRI machines, efficient power lines, quantum computing, and other technologies.
However, their usefulness is limited since superconductivity requires extremely low temperatures. It is highly challenging to integrate them with modern technology because of this demanding and costly requirement.
The electrical resistance of a superconductor has a specific critical temperature beyond which it drops suddenly to zero, unlike an ordinary metallic conductor, whose resistance declines gradually as temperature is reduced, even down to near absolute zero. READ MORE...
The electrical resistance of a superconductor has a specific critical temperature beyond which it drops suddenly to zero, unlike an ordinary metallic conductor, whose resistance declines gradually as temperature is reduced, even down to near absolute zero. READ MORE...