Showing posts with label Stem Cells. Show all posts
Showing posts with label Stem Cells. Show all posts

Monday, August 28

Turning Cells into Stem Cells


For decades, scientists have been able to create stems cells—known as induced pluripotent stem (iPS) cells—from somatic cells, such as those found in our skin.

However, these iPS cells still retain ghosts of their cellular pasts, which makes them less effective as a therapeutic tool.

A new study, using a method called transient-naïve-treatment (TNT) mimics the normal reprogramming process in early embryonic development to essentially wipe a cell’s memory, making these cells more similar to embryonic stem (ES) cells both molecularly and functionally.

Stem cells are the raw materials of the human body—they’re the original cells from which almost all other cells with specialized functions originate. So, the ability to use these cells in therapeutic treatments is immensely important. So important, in fact, that over the past couple of decades, scientists have devised ways to reprogram non-reproductive cells, also known as somatic cells, into embryonic stem (ES) cells known as induced pluripotent stem (iPS) cells.

This process is central to the field of regenerative medicine, which replaces diseased cells with healthy ones derived from these iPS cells. But there was just one problem—these reprogrammed cells retained ghosts of their past lives, making these treatments less effective than they otherwise could be.

“A persistent problem with the conventional reprograming process is that iPS cells can retain an epigenetic memory of their original somatic state, as well as other epigenetic abnormalities,” Ryan Lister, from the Harry Perkins Institute of Medical Research and The University of Western Australia, said in a press statement. “This can create functional differences between the iPS cells and the ES cells they’re supposed to imitate, and specialized cells subsequently derived from them, which limits their use.”      READ MORE...

Thursday, April 28

Making Skin Cells 30 Years Younger

Stock photo of fibroblasts (skin cells) labeled with fluorescent dyes. 
(Image credit: iStock / Getty Images Plus)



Researchers in the U.K. have developed a way to reverse the aging process in skin cells, turning back the biological clock by about 30 years.


De-aging cells has become increasingly common in the last decade, with researchers reprogramming multiple mouse, rat and human cell types. But never before have cells been de-aged by so many years and still retained their specific type and function.


The method, developed by Diljeet Gill, a postdoctoral candidate at the Babraham Institute in Cambridge, and his colleagues, was published April 8 in the journal eLife, and has been dubbed "maturation phase transient reprogramming."


The researchers applied this technique to fibroblasts (a common type of skin cell) from three middle-aged donors — who averaged at about 50 years old — then compared them to younger cells from donors aged 20 to 22. The researchers found that the middle-aged cells were similar to the younger cells, both chemically and genetically. When explored further, the team even noticed that the technique had affected genes related to age-related diseases, like Alzheimer's disease and cataracts.

last
In addition, Gill and his colleagues looked at the behavior of the fibroblasts to determine if they could also act like younger skin cells. When they wounded a layer of the cells, they found that the rejuvenated cells quickly moved to fill the gap — the same way that younger cells behave when healing wounds.


This study is not the first to de-age skin cells. That title goes to Nobel prize winner Shinya Yamanaka, who genetically reprogrammed mouse skin cells and turned them into so-called induced pluripotent stem cells, or iPSCs, back in 2006. These iPSCs resemble cells in early development, and have the potential to form any cell type in the body.  READ MORE...