If a photon carries too little energy, it does not fit inside a proton (left). A photon with sufficiently high energy is so small that it flies into the interior of a proton, where it 'sees' part of the proton (right). Maximum entanglement then becomes visible between the 'seen' and 'unseen' areas. Credit: IFJ PAN
Fragments of the interior of a proton have been shown by scientists from Mexico and Poland to exhibit maximum quantum entanglement. The discovery, already confronted with experimental data, allows us to suppose that in some respects the physics of the inside of a proton may have much in common not only with well-known thermodynamic phenomena, but even with the physics of... black holes.
Various fragments of the inside of a proton must be maximally entangled with each other, otherwise theoretical predictions would not agree with the data collected in experiments, it was shown in European Physical Journal C.
The Mexican-Polish theorists analyzed the situation in which electrons are fired at protons. When an incoming electron carrying a negative electric charge approaches a positively charged proton, it interacts with it electromagnetically and deflects its path.