Showing posts with label Quantum Computers. Show all posts
Showing posts with label Quantum Computers. Show all posts

Wednesday, May 8

Quantum Challenge Solved Underground


Radiation from space is a challenge for quantum computers as their computation time becomes limited by cosmic rays. Researchers from Chalmers University of Technology, Sweden, and University of Waterloo in Canada are now going deep underground in the search for a solution to this problem—in a two-kilometer-deep mine.

A recently discovered cause of errors in quantum computers is cosmic radiation. Highly charged particles from space disturb the sensitive qubits and cause them to lose their quantum state, as well as the ability to continue a calculation. 

But now quantum researchers from Sweden and Canada will join forces to find a solution to the problem—in the world's deepest located clean room, two kilometers underground.  READ MORE...

Friday, June 2

A Quantum Computer Reverses Time


Ever feel like you need more time? That it’s just flying by you?

And, then, do you ever wish you could reverse it?

A study published in Scientific Reports by an international team of researchers has demonstrated that a time-reversal program on a quantum computer is possible.

Researchers have pulled off a mind-boggling experiment using a quantum computer, and boy, does it mess with our understanding of time!

They wanted to see if they could make time reverse itself, just for a split second. You know, like rewinding a video, back in the olden days, but without the popcorn.

And guess what? They did it!

Well, sort of.

So, in the wacky world of quantum mechanics, where things can be particles and waves at the same time (talk about being indecisive!), these clever scientists created a thought experiment.

They imagined a bunch of billiard balls smashing into each other, going all haywire, and then magically rearranging themselves back into order. Like a cosmic cleanup crew, but with balls.   READ MORE...

Tuesday, November 16

Strange Particles Called ANYONS



Researchers Show New Strategy for Detecting Non-Conformist Particles Called Anyons

By observing how strange particles called anyons dissipate heat, researchers have shown that they can probe the properties of these particles in systems that could be relevant for topological quantum computing.A team of Brown University researchers has shown a new method of probing the properties of anyons, strange quasiparticles that could be useful in future quantum computers.

In research published in the journal Physical Review Letters, the team describes a means of probing anyons by measuring subtle properties of the way in which they conduct heat. Whereas other methods probe these particles using electrical charge, this new method enables researchers to probe anyons even in non-conducting materials. That’s critical, the researchers say, because non-conducting systems have far less stringent temperature requirements, making them a more practical option for quantum computing.

“We have beautiful ways of probing anyons using charge, but the question has been how do you detect them in the insulating systems that would be useful in what’s known as topological quantum computing,” said Dima Feldman, a physics professor at Brown and study co-author. “We show that it can be done using heat conductance. Essentially, this is a universal test for anyons that works in any state of matter.”

Anyons are of interest because they don’t follow the same rules as particles in the everyday, three-dimensional world. In three dimensions, there are only two broad kinds of particles: bosons and fermions. Bosons follow what’s known as Bose-Einstein statistics, while fermions follow Fermi-Dirac statistics. 

Generally speaking, those different sets of statistical rules mean that if one boson orbits around another in a quantum system, the particle’s wave function — the equation that fully describes its quantum state — does not change. On the other hand, if a fermion orbits around another fermion, the phase value of its wave function flips from a positive integer to a negative integer. If it orbits again, the wave function returns to its original state.

Anyons, which emerge only in systems that are confined to two dimensions, don’t follow either rule. When one anyon orbits another, its wave function changes by some fraction of an integer. And another orbit does not necessarily restore the original value of the wave function. Instead, it has a new value — almost as if the particle maintains a “memory” of its interactions with the other particle even though it ended up back where it started.

That memory of past interactions can be used to encode information in a robust way, which is why the particles are interesting tools for quantum computing. Quantum computers promise to perform certain types of calculations that are virtually impossible for today’s computers. A quantum computer using anyons — known as a topological quantum computer — has the potential to operate without elaborate error correction, which is a major stumbling block in the quest for usable quantum computers.  TO READ MORE ABOUT ANYONS, CLICK HERE...