Could let computers work at warp speed, save energy, and even make trains fly?
Scientists have used DNA to overcome a nearly insurmountable obstacle to engineering materials that will revolutionize electronics. Published in the journal Science on July 28, the work was performed by researchers at the University of Virginia School of Medicine and their collaborators.
One possible outcome of these engineered materials could be superconductors, which have zero electrical resistance, allowing electrons to flow unimpeded. That means that, unlike current means of electrical transmission, they don’t lose energy and don’t create heat.
Development of a superconductor that could be used widely at normal pressures and room temperature – instead of at extremely high or low temperatures, as is now possible – could lead to many technological wonders. These include hyper-fast computers, shrinking the size of electronic devices, allowing high-speed trains to float on magnets and slash energy use, and many more.
One such superconductor was first proposed by Stanford physicist William A. Little more than 50 years ago. Scientists have spent decades trying to make it work. However, even after validating the feasibility of his idea, they were left with a challenge that appeared impossible to overcome. Until now.
Edward H. Egelman, PhD, of UVA’s Department of Biochemistry and Molecular Genetics, has been a leader in the field of cryo-electron microscopy (cryo-EM), and he and Leticia Beltran, a graduate student in his lab, used cryo-EM imaging for this seemingly impossible project. “It demonstrates,” he said, “that the cryo-EM technique has great potential in materials research.” READ MORE...
One such superconductor was first proposed by Stanford physicist William A. Little more than 50 years ago. Scientists have spent decades trying to make it work. However, even after validating the feasibility of his idea, they were left with a challenge that appeared impossible to overcome. Until now.
Edward H. Egelman, PhD, of UVA’s Department of Biochemistry and Molecular Genetics, has been a leader in the field of cryo-electron microscopy (cryo-EM), and he and Leticia Beltran, a graduate student in his lab, used cryo-EM imaging for this seemingly impossible project. “It demonstrates,” he said, “that the cryo-EM technique has great potential in materials research.” READ MORE...