Showing posts with label Mathematical Formalism. Show all posts
Showing posts with label Mathematical Formalism. Show all posts

Thursday, June 6

Quantum Physics Simplified


Quantum mechanics is simultaneously our most powerful and weirdest scientific theory. It’s powerful because it offers exquisite control over the nanoworld of molecular, atomic, and subatomic phenomena. It’s weird because, while we have a complete mathematical formalism, we physicists have been arguing for more than a century over what that formalism means. In other words, unlike other physical theories, the mathematics of quantum mechanics has no clear interpretation. That means physicists and philosophers have been left arguing about which interpretation makes the most sense. Sometimes the idea of “simplicity” is invoked to answer that question.

The “simplest” explanation
There are two main parts of the quantum formalism. The first is what’s called the dynamical equation. This part gives us a mathematical description of how undisturbed systems evolve. We physicists love our dynamical equations — things like Newton’s equations for particles or Maxwell’s equations for electromagnetic waves. In classical physics, the dynamical equation was pretty much the end of the story. Nothing else was required and we came to think of those equations as existing “out there.” They were timeless laws of physics that never required any reference to what physicists were doing.     READ MORE...