Showing posts with label La Silla Observatory. Show all posts
Showing posts with label La Silla Observatory. Show all posts

Friday, February 25

Waiting For A Star To Explode

Supernova 1987A appears as a bright spot near the centre of this image of the Tarantula nebula, taken by the ESO Schmidt Telescope.Credit: ESO

Masayuki Nakahata has been waiting 35 years for a nearby star to explode.

He was just starting out in science the last time it happened, in February 1987, when a dot of light suddenly appeared in the southern sky. This is the closest supernova seen during modern times; and the event, known as SN 1987A, gained worldwide media attention and led to dramatic advances in astrophysics.

Nakahata was a graduate student at the time, working on what was then one of the world’s foremost neutrino catchers, the Kamiokande-II detector at the Kamioka Underground Observatory near Hida, Japan. He and a fellow student, Keiko Hirata, spotted evidence of neutrinos pouring out of the supernova — the first time anyone had seen these fundamental particles originating from anywhere outside the Solar System.

Now, Nakahata, a physicist at the University of Tokyo, is ready for when a supernova goes off. He is head of the world’s largest neutrino experiment of its kind, Super-Kamiokande, where upgrades to its supernova alert system were completed late last year. The improvements will enable the observatory’s computers to recognize when it is detecting neutrinos from a supernova, almost in real time, and to send out an automated alert to conventional telescopes worldwide.

Astronomers will be waiting. “It’s gonna give everybody the willies,” says Alec Habig, an astrophysicist at the University of Minnesota, Duluth. Early warning from Super-Kamiokande and other neutrino observatories will trigger robotic telescopes — in many cases responding with no human intervention — to swivel in the direction of the dying star to catch the first light from the supernova, which will come after the neutrino storm.

But when the light arrives, it could be too much of a good thing, says Patrice Bouchet, an astrophysicist at the University of Paris-Saclay who made crucial observations of SN 1987A, from the La Silla Observatory in Chile. The brightest events, which would shine brighter than a full Moon and be visible during the day, would overwhelm the ultra-sensitive but delicate sensors in the telescopes used by professional astronomers.

Wednesday, October 27

Beyond our Reach

Even if we traveled at the speed of light, we'd never catch up to these galaxies.

Distant galaxies, like those found in the Hercules galaxy cluster, are not only redshifted and receding away from us, but their apparent recession speed is accelerating. Many of the most distant galaxies in this image are receding from us at speeds that appear to exceed the speed of light. We will never be able to reach any of the ones presently located more than 18 billion light-years away. (Credit: ESO/INAF-VST/OmegaCAM. Acknowledgement:  OmegaCen/Astro-WISE/Kapteyn Institute.)

KEY TAKEAWAYS
  • The universe is expanding, with every galaxy beyond the Local Group speeding away from us.
  • Today, most of the universe's galaxies are already receding faster than the speed of light.
  • All galaxies currently beyond 18 billion light-years are forever unreachable by us, no matter how much time passes.
  • Our universe, everywhere and in all directions, is filled with stars and galaxies.

The Milky Way, as seen at La Silla observatory, is a stunning, awe-inspiring sight to anyone, and offers a spectacular view of a great many stars in our galaxy. Beyond our galaxy, however, are trillions of others, nearly all of which are expanding away from us. (Credit: ESO / HÃ¥kon Dahle)

  • From our vantage point, we observe up to 46.1 billion light-years away.

As long as the light from any galaxy that was emitted at the start of the hot Big Bang 13.8 billion years ago would have reached us by today, that object is within our presently observable universe. However, not every observable object is reachable. (Credit: F. Summers, A. Pagan, L. Hustak, G. Bacon, Z. Levay, and L. Frattere (STScI))

  • Our visible universe contains an estimated ~2 trillion galaxies.

The Hubble eXtreme Deep Field (XDF) may have observed a region of sky just 1/32,000,000th of the total, but was able to uncover a whopping 5,500 galaxies within it: an estimated 10% of the total number of galaxies actually contained in this pencil-beam-style slice. The remaining 90% of galaxies are either too faint or too red or too obscured for Hubble to reveal. (Credit: HUDF09 and HUDF12 teams; Processing: E. Siegel)

However, most of them are already permanently unreachable by us.

TO READ MORE, CLICK HERE...