Showing posts with label Cytosine. Show all posts
Showing posts with label Cytosine. Show all posts

Wednesday, July 20

The Science of Aliens


All cellular life on Earth is based on DNA, which transfers information—about everything from hair color to personality traits—from one generation to the next. The four chemical bases that convey this information are adenine (A), cytosine (C), guanine (G), and thymine (T).

The other essential “information molecule” on Earth is RNA, in which thymine (T) is replaced by uracil (U). RNA has a one-string structure rather than a double-string structure like DNA. 

The first cellular life on our planet is thought to have relied exclusively on this means of transferring genetic information—in the so-called “RNA world”—and even today there are viruses (like the one that causes COVID) that only use RNA.

In a paper recently published in Science, a research group led by Dona Sleiman from the Institute Pasteur in Paris has discovered that some viruses show more variation in their genetic coding than was previously known. In the RNA of these viruses, adenine (A) is replaced with Z, where Z stands for diaminopurine.

This follows an earlier study by Zunyi Yang and colleagues at the Foundation for Applied Molecular Evolution in Gainesville, Florida, showing that an artificial genetic system could be created by adding two additional non-standard bases to ordinary DNA. 

Amazingly, the artificial six-base system continued to evolve rather than reverting back to the natural four-base system. This implies that the DNA we take as standard—made of A, C, G, and T—is just one of many viable solutions to the challenge of biological information transfer.

The variability does not stop here. Strings of DNA are organized in base triplets that determine which of the standard 20 amino acids are assigned to synthesize proteins. However, these triplet assignments are not universal. 

For example, CUG, which usually codes for the amino acid serine, instead codes for the amino acid leucine in some types of fungi. Also, some organisms naturally encode for two additional amino acids instead of the standard 20 amino acids.  READ MORE...