A new theory suggests that mutations have few straightforward ways to establish themselves in cells and cause tumors.
For many researchers, the road to cancer prevention is long and difficult, but a recent study by Rice University scientists suggests that there may be shortcuts.
A theoretical framework is being developed by Rice scientist Anatoly Kolomeisky, postdoctoral researcher Hamid Teimouri, and research assistant Cade Spaulding that will explain how cancers brought on by several genetic mutations might be more readily recognized and perhaps prevented.
It does this by detecting and ignoring transition pathways that don’t significantly contribute to the fixation of mutations in a cell that later becomes a tumor.
The study, which was published on May 13th, 2022 in the Biophysical Journal, details their analysis of the effective energy landscapes of cellular transformation pathways connected to a number of cancers.
The ability to narrow the number of paths to those most likely to initiate cancer could help in the development of strategies to interrupt the process before it begins.
“In some sense, cancer is a bad-luck story,” said Kolomeisky, a professor of chemistry and of chemical and biomolecular engineering.
“In some sense, cancer is a bad-luck story,” said Kolomeisky, a professor of chemistry and of chemical and biomolecular engineering.
“We think we can decrease the probability of this bad luck by looking for low-probability collections of mutations that typically lead to cancer. Depending on the type of cancer, this can range between two mutations and 10.”
Calculating the effective energies that govern interactions in biomolecular systems may help anticipate how they will behave. The theory is widely used to anticipate how a protein will fold based on the sequence of its constituent atoms and how they interact. READ MORE...
Calculating the effective energies that govern interactions in biomolecular systems may help anticipate how they will behave. The theory is widely used to anticipate how a protein will fold based on the sequence of its constituent atoms and how they interact. READ MORE...