Showing posts with label Absolute Zero. Show all posts
Showing posts with label Absolute Zero. Show all posts

Thursday, June 13

Quantum Mechanics in Ultra Cold


There's a hot new BEC in town that has nothing to do with bacon, egg, and cheese. You won't find it at your local bodega, but in the coldest place in New York: the lab of Columbia physicist Sebastian Will, whose experimental group specializes in pushing atoms and molecules to temperatures just fractions of a degree above absolute zero.


Writing in Nature, the Will lab, supported by theoretical collaborator Tijs Karman at Radboud University in the Netherlands, has successfully created a unique quantum state of matter called a Bose-Einstein Condensate (BEC) out of molecules.


Their BEC, cooled to just five nanoKelvin, or about -459.66°F, and stable for a strikingly long two seconds, is made from sodium-cesium molecules. Like water molecules, these molecules are polar, meaning they carry both a positive and a negative charge. 


The imbalanced distribution of electric charge facilitates the long-range interactions that make for the most interesting physics, noted Will.     READ MORE...

Tuesday, September 13

Coldest Matter in The Universe

An illustration shows trapped ytterbium atoms cooled to temperatures about 3 billion times 
colder than deep space (Image credit: Ella Maru Studio/Courtesy of K. Hazzard/Rice University)



A team of researchers has cooled matter to within a billionth of a degree of absolute zero, colder than even the deepest depths of space ,  far away from any stars.


Interstellar space never gets this cold due to the fact that it is evenly filled with the cosmic microwave background (CMB), a form of radiation left over from an event that occurred shortly after the Big Bang when the universe was in its infancy. 

The chilled matter is even colder than the coldest known region of space, the Boomerang Nebula, located 3,000 light-years from Earth, which has a temperature of just one degree above absolute zero.

The experiment, run at the University of Kyoto in Japan and used fermions, which is what particle physicists call any particle that makes up matter, including electrons, protons and neutrons. 

The team cooled their fermions — atoms of the element ytterbium — to around a billionth of a degree above absolute zero, the hypothetical temperature at which all atomic movement would cease.

"Unless an alien civilization is doing experiments like these right now, anytime this experiment is running at Kyoto University it is making the coldest fermions in the universe," Rice University researcher Kaden Hazzard, who took part in the study, said in a statement(opens in new tab).  READ MORE...