Wednesday, November 3

A New Force of Nature


The Large Hadron Collider (LHC) sparked worldwide excitement in March as particle physicists reported tantalizing evidence for new physics — potentially a new force of nature. Now, our new result, yet to be peer reviewed, from CERN’s gargantuan particle collider seems to be adding further support to the idea.

Our current best theory of particles and forces is known as the standard model, which describes everything we know about the physical stuff that makes up the world around us with unerring accuracy. The standard model is without doubt the most successful scientific theory ever written down and yet at the same time we know it must be incomplete.


Famously, it describes only three of the four fundamental forces – the electromagnetic force and strong and weak forces, leaving out gravity. It has no explanation for the dark matter that astronomy tells us dominates the universe, and cannot explain how matter survived during the big bang. Most physicists are therefore confident that there must be more cosmic ingredients yet to be discovered, and studying a variety of fundamental particles known as beauty quarks is a particularly promising way to get hints of what else might be out there.

Beauty quarks, sometimes called bottom quarks, are fundamental particles, which in turn make up bigger particles. There are six flavors of quarks that are dubbed up, down, strange, charm, beauty/bottom and truth/top. Up and down quarks, for example, make up the protons and neutrons in the atomic nucleus.


The LHCb experiment at CERN. Credit: CERN

Beauty quarks are unstable, living on average just for about 1.5 trillionths of a second before decaying into other particles. The way beauty quarks decay can be strongly influenced by the existence of other fundamental particles or forces. When a beauty quark decays, it transforms into a set of lighter particles, such as electrons, through the influence of the weak force. One of the ways a new force of nature might make itself known to us is by subtly changing how often beauty quarks decay into different types of particles.  TO READ MORE, CLICK HERE...

No comments:

Post a Comment