Showing posts with label Spectrum.ieee.org. Show all posts
Showing posts with label Spectrum.ieee.org. Show all posts

Thursday, August 10

Fusion Energy is Really Possible


As Earth’s inhabitants suffer through what may wind up being the hottest year on record, there’s a Promethean spark of hope. Virtually unlimited fusion energy appears to be, if not right around the corner, at least within hailing distance.

Last December, Lawrence Livermore National Laboratory’s National Ignition Facility finally succeeded in forcing the hydrogen isotopes deuterium and tritium to undergo a self-sustained fusion reaction. It was an encouraging advancement, though not exactly a breakthrough. 

NIF’s small net energy gain didn’t factor in the energy it took to fire up the 192 ultraviolet lasers that initiated the reaction, which lasted “for the briefest blink of a moment,” as Dina Genkina reported for IEEE Spectrum. While there are lessons to be learned from NIF’s successes and failures, laser-based inertial confinement fusion doesn’t yet provide a practical path to commercial-scale power generation.

There’s also a lot to learn from Iter, the world’s largest fusion experiment, which is now being built in southern France. Since 1985, the project has brought together 35 countries and thousands of scientists and engineers. 

ITER’s magnetic-confinement fusion experiments will happen inside a giant doughnut-shaped device called a tokamak, where powerful superconducting magnets will force hydrogen isotopes to fuse.

Even if Iter succeeds in touching off a sustained fusion reaction, though, it will never harness the energy produced. That crucial engineering step will be accomplished by some other group. 

One team vying to take fusion energy to market is Commonwealth Fusion Systems, in Devens, Mass., whose six founders all did research at Iter. In “Tale of the Tape,” page 30, writer Tom Clynes takes us inside CFS’s Sparc pilot project to create a new kind of commercially viable, compact fusion reactor.  READ MORE...

Tuesday, July 18

Green Path for Hydrogen


Hydrogen has great promise as a low-emission fuel source. It burns clean, generating only water as a by-product, and when it’s produced through electrolysis by splitting water into hydrogen and oxygen, the entire life cycle can be very environmentally friendly.

But the use of hydrogen has never reached its potential as a renewable fuel, mostly because its production process drives up the cost. Most hydrogen today is still produced as a by-product of fossil-fuel refinement—using methane with carbon monoxide as a by-product. 

Meanwhile, the hydrogen produced by electrolysis represents less than 1 percent of all the world’s hydrogen production. In order for hydrogen to be a viable source of clean energy, the cost of electrolysis needs to be much lower.

Sharaf Alsharif, a researcher at the Oldenburger OFFIS Institute for Information Technology in Oldenburg, Germany, believes digital twins could help bring down the cost of clean hydrogen production.

Digital twins are computer-simulation programs that can track and adjust the operations of a physical device in great detail. The close monitoring of hydrogen electrolyzers that digital twins provide could help streamline the devices’ operation and bring down the cost of electrolysis as a result.  READ MORE...