Showing posts with label Spectroscopy. Show all posts
Showing posts with label Spectroscopy. Show all posts
Thursday, September 14
Secret Role in Origin of Life
Researchers have developed a new method to observe chemical reactions in liquids, shedding light on reactions involving molecules like urea that may have contributed to the emergence of life on Earth. The technique involves a special apparatus that produces a fine liquid jet and X-ray spectroscopy, allowing scientists to study reactions taking place in mere femtoseconds.
Scientists from ETH Zurich and the University of Geneva have developed a new technique that allows them to observe chemical reactions taking place in liquids at extremely high temporal resolution. This innovation enables them to track how molecules change within in mere femtoseconds – in other words, within a few quadrillionths of a second.
This breakthrough builds upon prior research by the same team, led by Hans Jakob Wörner, Professor of Physical Chemistry at ETH Zurich. That work yielded similar results for reactions that take place in gas environments.
To expand their X-ray spectroscopy observations to liquids, the researchers had to design an apparatus capable of producing a liquid jet with a diameter of less than one micrometer in a vacuum. This was essential because if the jet were any wider, it would absorb some of the X-rays used to measure it.
Molecular pioneer in biochemistry
Using the new method, the researchers were able to gain insights into the processes that led to the emergence of life on Earth. Many scientists assume that urea played a pivotal role here. It is one of the simplest molecules containing both carbon and nitrogen.
What’s more, it’s highly likely that urea was present even when the Earth was very young, something that was also suggested by a famous experiment done in the 1950s: American scientist Stanley Miller concocted a mixture of those gases believed to have made up the planet’s primordial atmosphere and exposed it to the conditions of a thunderstorm. This produced a series of molecules, one of which was urea. READ MORE...
Subscribe to:
Posts (Atom)