Advanced SMRs offer many advantages, such as relatively small physical footprints, reduced capital investment, ability to be sited in locations not possible for larger nuclear plants, and provisions for incremental power additions. SMRs also offer distinct safeguards, security and nonproliferation advantages.
The Department has long recognized the transformational value that advanced SMRs can provide to the nation’s economic, energy security, and environmental outlook. Accordingly, the Department has provided substantial support to the development of light water-cooled SMRs, which are under licensing review by the Nuclear Regulatory Commission (NRC) and will likely be deployed in the late 2020s to early 2030s. The Department is also interested in the development of SMRs that use nontraditional coolants such as liquid metals, salts, and gases for the potential safety, operational, and economic benefits they offer.
Advanced SMR R&D Program
Building on the successes of the SMR Licensing Technical Support (LTS) program, the Advanced SMR R&D program was initiated in FY2019 and supports research, development, and deployment activities to accelerate the availability of U.S.-based SMR technologies into domestic and international markets. Significant technology development and licensing risks remain in bringing advanced SMR designs to market and government support is required to achieve domestic deployment of SMRs by the late 2020s or early 2030s. TO READ MORE ABOUT THIS, CLICK HERE...
Through this program, the Department has partnered with NuScale Power and Utah Associated Municipal Power Systems (UAMPS) to demonstrate a first-of-a-kind reactor technology at the Idaho National Laboratory this decade. Through these efforts, the Department will provide broad benefits to other domestic reactor developers by resolving many technical and licensing issues that are generic to SMR technologies, while promoting U.S. energy independence, energy dominance, and electricity grid resilience, and assuring that there is a future supply of clean, reliable baseload power.