Showing posts with label Fuel Cell. Show all posts
Showing posts with label Fuel Cell. Show all posts

Wednesday, July 5

Hydrogen Fuel Cell


Promising new hydrogen fuel cell technology has up to 50% higher performance than current state-of-the-art technology, with improved durability. 

The grooved electrode design advance may help optimize next-generation fuel cell technology to power emission-free medium- and heavy-duty transportation.

"We had a theory that by reimagining the way electrodes are designed we could achieve improved performance," said Jacob Spendelow, materials scientist with the Los Alamos National Laboratory team that described its results in the journal Nature Energy. 

"One of our biggest takeaways is that novel materials are not the only route to improve performance. The way the materials are put together can be equally important.

"All we did was take conventional commercially available materials and change the way we put them together to change the microscale architecture, and that resulted in substantially higher performance."

Hydrogen fuel cells—and specifically a version of the technology called proton exchange membrane fuel cells—represent an emission-free engine design that uses hydrogen as a fuel. Fuel cells could transform the medium- and heavy-duty transportation sector, which has been difficult to decarbonize.  READ MORE...

Saturday, April 29

Next Gen Fuel Cell


Researchers develop a new ultra-high-density sulfonic acid polymer electrolyte membrane for fuel cells, which can be used for vehicles and combined heat and power systems. Credit: Atsushi Noro





Researchers at Nagoya University in Japan, under a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO), have created poly(styrenesulfonic acid)-based PEMs with a high density of sulfonic acid groups.


A crucial element in eco-friendly polymer electrolyte fuel cells is a polymer electrolyte membrane (PEM), which produces electrical energy through the interaction of hydrogen and oxygen gases. Practical applications of fuel cells include fuel cell vehicles (FCVs) and fuel cell combined heat and power (CHP) systems.

The best-known PEM is a membrane based on a perfluorosulfonic acid polymer, such as Nafion, which was developed by DuPont in the 1960s. It has a good proton conductivity of 0.1 S/cm at 70-90 °C (158-194 °F) under humidified conditions. Under these conditions, protons can be released from sulfonic acid groups.

Proton conduction in such membranes typically depends on the proton transport mechanism between protons, sulfonic acid groups, and water molecules.  Typically, the higher the density of the sulfonic acid groups in the membrane, the higher the density of protons that can be released from the sulfonic acid groups; therefore, the higher density of the sulfonic acid groups usually results in higher proton conductivities.

However, using a conventional synthesis process, it is difficult to synthesize PEMs with a high density of sulfonic acid groups. For instance, to increase the density of sulfonic acid groups in a poly(styrenesulfonic acid)-based PEM, the sulfonation reaction must be carried out over long hours or under severe conditions. It usually uses highly oxidizing substances, such as fuming sulfuric acid and chlorosulfonic acid.

Unfortunately, this leads to undesirable side reactions, such as cleavage of the backbone chains of the polymer. Therefore, to avoid unwanted side reactions during polymer synthesis, commercially available PEMs are usually synthesized to have a low density of sulfonic acid groups.  READ MORE...