A new set of equations can precisely describe the reflections of the Universe that appear in the warped light around a black hole.
The proximity of each reflection is dependent on the angle of observation with respect to the black hole, and the rate of the black hole's spin, according to a mathematical solution worked out by physics student Albert Sneppen of the Niels Bohr Institute in Denmark.
This is really cool, absolutely, but it's not just really cool. It also potentially gives us a new tool for probing the gravitational environment around these extreme objects.
"There is something fantastically beautiful in now understanding why the images repeat themselves in such an elegant way," Sneppen said. "On top of that, it provides new opportunities to test our understanding of gravity and black holes."
If there's one thing that black holes are famous for, it's their extreme gravity. Specifically that, beyond a certain radius, the fastest achievable velocity in the Universe, that of light in a vacuum, is insufficient to achieve escape velocity.
That point of no return is the event horizon – defined by what's called the Schwarszchild radius – and it's the reason why we say that not even light can escape from a black hole's gravity. TO READ MORE
No comments:
Post a Comment