Showing posts with label Quarks. Show all posts
Showing posts with label Quarks. Show all posts

Wednesday, November 26

How most of the universe's visible mass is generated

This illustration shows how the strong interaction evolves with distance, generating more than 98% of the ground and excited state of the nucleon masses. This evolution of strong-interaction dynamics is described within the CSM approach. At distances comparable to the size of a hadron, ~10–13 cm, its relevant constituents are no longer the bare quarks and gluons of QCD. Instead, dressed quarks and dressed gluons emerge when bare quarks and gluons are surrounded by clouds of strongly coupled quarks and gluons undergoing continual creation and annihilation. Credit: Jefferson Lab/Shannon West



Deep in the heart of the matter, some numbers don't add up. For example, while protons and neutrons are made of quarks, nature's fundamental building blocks bound together by gluons, their masses are much larger than the individual quarks from which they are formed.


This leads to a central puzzle … why? In the theory of the strong interaction, known as quantum chromodynamics or QCD, quarks acquire their bare mass through the Higgs mechanism. The long-hypothesized process was confirmed by experiments at the CERN Large Hadron Collider in Switzerland and led to the Nobel Prize for Peter Higgs in 2013.

Yet the inescapable issue remains that "this mechanism contributes to the measured proton and neutron masses at the level of less than 2%," said Victor Mokeev, a staff scientist and phenomenologist at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility.


Tuesday, September 3

Faster Than Speed of Light



The inside of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider. Rochester physicists working at the detector have observed spin entanglement between top quarks and top antiquarks persisting at long distances and high speeds. Credit: CERN




Researchers have confirmed that quantum entanglement persists between top quarks, the heaviest known fundamental particles.

Physicists have demonstrated quantum entanglement in top quarks and their antimatter partners, a discovery made at CERN. This finding extends the behavior of entangled particles to distances beyond the reach of light-speed communication and opens new avenues for exploring quantum mechanics at high energies.

An experiment by a group of physicists led by University of Rochester physics professor Regina Demina has produced a significant result related to quantum entanglement—an effect that Albert Einstein called “spooky action at a distance.”

Entanglement concerns the coordinated behavior of minuscule particles that have interacted but then moved apart. Measuring properties—like position or momentum or spin—of one of the separated pair of particles instantaneously changes the results of the other particle, no matter how far the second particle has drifted from its twin. In effect, the state of one entangled particle, or qubit, is inseparable from the other.       READ MORE...

Monday, July 1

Faster than the Speed of Light



The inside of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider. Rochester physicists working at the detector have observed spin entanglement between top quarks and top antiquarks persisting at long distances and high speeds. Credit: CERN






Researchers have confirmed that quantum entanglement persists between top quarks, the heaviest known fundamental particles.

Physicists have demonstrated quantum entanglement in top quarks and their antimatter partners, a discovery made at CERN. This finding extends the behavior of entangled particles to distances beyond the reach of light-speed communication and opens new avenues for exploring quantum mechanics at high energies.

An experiment by a group of physicists led by University of Rochester physics professor Regina Demina has produced a significant result related to quantum entanglement—an effect that Albert Einstein called “spooky action at a distance.”

Entanglement concerns the coordinated behavior of minuscule particles that have interacted but then moved apart. Measuring properties—like position or momentum or spin—of one of the separated pair of particles instantaneously changes the results of the other particle, no matter how far the second particle has drifted from its twin. In effect, the state of one entangled particle, or qubit, is inseparable from the other.        READ MORE...